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VDEs result in largest forces among disruptive events

• Tokamaks are prone to disruptions [Hender et al., 2007]

– disruption database show wide range of behaviours
(see top figure)

• Vertical Displacement Event (VDE) is when
positional control is lost and unstable elongated
plasma drifts into vessel

– abrupt release of thermal and magnetic energy

– currents, forces, stresses, heat loads ⇒ severe
structural damage

– worse if toroidal asymmetry and rotation (peaking,
resonance, bottom figure)

Courtesy of [de Vries et al., 2011]

Courtesy of [Riccardo et al., 2000]
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Origin of wall currents varies during multi-phase hot VDE

divertor coil

vacuum vessel

plasma

~F = ~jp × ~Bext

• drifting phase

– conducting vessel only allows flux change on resistive timescales

– “slow”, τVDE � τA, even in 3D [Zakharov, 2008]

– opposing currents either in wall or leading halo

• contact phase
– slow transfer of flux from core to halo+wall, peel off of

flux-surfaces

qedge ∝ a2/I (a) tends to drop
kink instabilities as qedge . 2
edge currents trigger peeling modes, filaments [Ebrahimi, 2017]

– induced currents from rapidly cooling plasma

resistivity increases due to thermal quench
fast plasma current quench drives currents in halo (force-free) and
wall, qedge rises
danger of runaway electrons in large devices

D.Pfefferlé — M3D-C1 VDE — APS October 25, 2017 2/13



Origin of wall currents varies during multi-phase hot VDE

divertor coil

plasma

~V ∝ η−1w

jφ,wall ∝ ∂tΨp

• drifting phase

– conducting vessel only allows flux change on resistive timescales

– “slow”, τVDE � τA, even in 3D [Zakharov, 2008]

– opposing currents either in wall or leading halo

• contact phase
– slow transfer of flux from core to halo+wall, peel off of

flux-surfaces

qedge ∝ a2/I (a) tends to drop
kink instabilities as qedge . 2
edge currents trigger peeling modes, filaments [Ebrahimi, 2017]

– induced currents from rapidly cooling plasma

resistivity increases due to thermal quench
fast plasma current quench drives currents in halo (force-free) and
wall, qedge rises
danger of runaway electrons in large devices
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Need for realistic modelling of 3D effects during hot VDEs

Extensive modelling
1. axisymmetric Grad-Shafranov coupled to wire models of wall

– TSC [Jardin et al., 1986; Miyamoto et al., 2012], DINA [Khayrutdinov and Lukash, 1993], MAXFEA [Miki

et al., 2001]

2. very detailed models of the wall, but ad-hoc plasma physics
– VALEN [Bialek et al., 2001], CARIDDI [Albanese et al., 2015], [Roccella et al., 2008]

3. resistive MHD simulations at low Lundquist number, poor separation with Alfvén timescales
– M3D [Strauss et al., 2014], CTD [Aydemir, 2000]

Full non-linear 3D modelling using resistive MHD code M3D-C1

• minimal intervention to influence hot VDE history (plasma current, sources)

– driving mechanisms, chain of events, timing of various effects, sensitivity to parameter change

• realistic timescales and parameters via computationally challenging simulations

• assessment of halo/wall currents and wall forces

– qualitative comparison with shunt tile diagnostics
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M3D-C1 has unique capabilities for modelling VDEs

• XMHD [Breslau et al., 2009;

Ferraro et al., 2016]

– continuity, momentum, energy

– Faraday, Ampère, Ohm

• resistive wall,
∂tB = −∇× (ηwall j )

• vacuum, j = 0

• ideal boundary (perfect
conductor)

• PF coils (static)

∂tn + ∇ · (nv) = −D∇2n

mn
dv
dt

= j × B −∇p −∇ ·Π

dp

dt
+ Γp∇ · v = (Γ− 1)(ηj2 −∇ · q −Π : v)

with q = −κ⊥∇T − κ||bb ·∇T ,
Π = µ(∇v + ∇vT ) + λ(∇ · v)I , T = p/n,
η ∝ T−3/2 (Spitzer)

∂tB = ∇× [v × B − ηj ]

∇× B = µ0j
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M3D-C1 has unique capabilities for modelling VDEs

• XMHD [Breslau et al., 2009;

Ferraro et al., 2016]

– continuity, momentum, energy

– Faraday, Ampère, Ohm

• resistive wall,
∂tB = −∇× (ηwall j )

• vacuum, j = 0

• ideal boundary (perfect
conductor)

• PF coils (static)

• key features

– finite-thickness axisymmetric
resistive wall

– anisotropic unstructured mesh for
finite-element (weak) C1 solution

– cubic spline on 48 planes for 3D

– implicit time-stepping allows
simulations on RW timescales

• limiting assumptions

– halo is a cold, low density, resistive
plasma (choice of Thalo)

– static external fields
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Experimental traces serve as modelling targets

Reproduce NSTX #139536
[Gerhardt et al., 2012; Breslau, 2015]

• VDE phases and timescales

– slow vertical motion
τVDE ∼ 50ms, largely
exponential

– rapid τCQ ∼ 5ms current
quench begins at wall contact

– relaxation of wall currents
τLR ∼ 10ms

• shunt tile n = 0 ∼ n = 1
throughout current quench

NSTX #139536
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Wall resistivity defines characteristic VDE duration

NSTX #139536
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Halo temperature has notable impact on VDE evolution

• VDE characteristic time γVDE ∝ ηwall
• Open field-line plasma

– thermal contact with wall (high κ||)

– line-tied to wall on Alfvénic timescales

• Thalo =
pedge
nedge

, boundary condition

– to avoid negative overshoot (advection),
pedge/p0 & 10−5 ⇒ nedge/n0 ∼ 10−2

– Thalo = 25eV and ηhalo ∼ 1.4× 10−5Ωm

– cross-section of open field-line region is large
⇒ halo resistance competes with wall

• Workaround: compute Spitzer resistivity by

η(x) =
η0

(Te(x)− Toffset)3/2

M3D-C1 2D nonlinear runs
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D.Pfefferlé — M3D-C1 VDE — APS October 25, 2017 7/13



3D nonlinear simulations capture rich physics

• halo region plays active role

– opposing induced currents (divertor)

– broad contact with wall

– late onset of 3D modes, stabilizing halo

• Fast blue case

– ηwall = 4.9× 10−5 Ωm, short τVDE

– high Thalo = 25 eV
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3D nonlinear simulations capture rich physics

• less active halo

– thin halo, narrow contact point with wall

– 3D edge modes triggered immediately

– filamentation, vacuum bubbles [Rosenbluth et al., 1976]

• Slow red case

– ηwall = 1.9× 10−6 Ωm, long τVDE

– low Thalo = 9 eV
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Isocontours of Ψp− < Ψp > reveal toroidal modes

• Slow red case

– ηwall = 1.9× 10−6 Ωm

– low Thalo = 9 eV

• figure caption

– poloidal cuts at φ = 0, π

– isocontours at ±Ψ̃p,max/2

– transparency scales with mode amplitude

• n = 6 peeling-ballooning collapsing into
n = 2 global mode

• low degree of kinking
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Penetrating edge modes responsible for initiating current quench

• stochastic field-lines ⇒ efficient heat transport via parallel conductivity κ||

• rapid cooling (cold wall) → increase in Ohmic dissipation

• only from 3D (effective 2D model?)
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Onset of 3D modes precipitates current quench
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• Slow red case

– ηwall = 1.9× 10−6 Ωm, long τVDE

– low Thalo = 9 eV

• 3D evolution identical to 2D until presence of large
amplitude toroidal modes

• observations

1. degradation of thermal energy (Pavg )
2. current density flattening ⇒ drop in internal inductance
⇒ steady plasma current LIp = Ψp

3. resistivity increase as plasma stops cooling ⇒ decay of
plasma current ⇒ current transfer to wall
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Normal wall current inherit 3D patterns from imploding plasma

normal currents on wall (total)

• pattern rotation

– zero global momentum (no net rotation)

– sheared rotation from peeling of q

– amplitude qualitatively matches
experimental shunt tiles

Fast blue case Slow red case

toroidal (arrows) and normal (colour) currents on divertor
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Conclusions

• Modelling of NSTX hot VDEs using M3D-C1
– realistic τVDE , τCQ and τLR timescales

– parameter scans with 2D nonlinear simulations and assessment of halo temperature on τVDE

– heavy 3D nonlinear simulations deployed for two choices of Thalo

• Thalo affects timing (onset) of 3D modes (VDE evolution)
– high Thalo : stabilising effect ⇒ slower current quench
– low Thalo : immediate onset of edge modes ⇒ rapid degradation of thermal energy

halo width (contact area) could be determined experimentally ⇒ increase poloidal resolution of shunt
tiles

• break-up of flux-surfaces (3D effect) responsible for rapid thermal quench
– inward penetration of modes, initially high-n, cascading to low-n

– field-line stochastisation ⇒ rapid cooling ⇒ precipitates current quench
– time-evolving non-axisymmetric patterns are complex

shearing, merging, rotation is unclear ⇒ increase toroidal resolution of shunt tiles
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Computational boundary does not affect VDE

• computational boundary is a perfect conductor

• < 1% effect on non-linear 2D evolution for highest wall
resistivity and fastest VDE
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Induced wall currents supported by few mesh points

• skin depth δ =
√

2ηw/γVDEµ0 & 10cm

• currents are well resolved in resistive wall despite small
thickness
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